Test-Driven Development (TDD) ;5 TDD

Underlying philosophy
Test code interleaved with system code development yields more reliable
software.

Advantages
Increases confidence of code correctness.

Bugs/mistakes are easier to locate/fix in code immediately after it is written since
it still fresh in the programmer’s mind.

Code is developed such that classes/methods are testable in isolation.
Helps ensure that code satisfies system requirements.
The tests serve as system-level documentation.
Decreases debugging time.
Uncovers design flaws
Integrates naturally with stepwise refinement & problem decomposition

Allows functionality to be added incrementally

Intro to Object-Oriented Dev |

TDD Coding 5,5 0D

Composing test code
Test code is developed in a separate test class - automated.
Objects of the class under test are instantiated in the test class.
Code which exercises the objects is written.

Assertion code which expresses the correct behavior of the objects under
exercise is written.

Testing
The goal of tests are to discover errors in your code.
Writes tests that purposefully attempt to cause code to fail.

When code it changed, tests on that code that previously passed must be re-
executed.

Program testing can best show the presence of errors but never their
absence.

--Edsger Dijkstra: 1930-2002

Intro to Object-Oriented Dev |

Practice of TDD {5 TDD

Approach
Write a small amount of code, write the test code for it
Tests code 1s small and targeted
Alternatively, write the test code for each method prior to writing the method.

As soon as the method is written it is ready to be tested with the previously written test
code.

Unit Testing

Simple accessor/mutator methods can be tested by using them to test construction
and other methods, (simple == 1 line of code).

TDD Development Cycle
Code the tests for the next module to be developed
Code the module so that it passes the tests

Execute the tests
Refactor/modify the code related to failed tests (automated process)

Repeat the TDD development cycle

Intro to Object-Oriented Dev |

JUnit Testing in BluedJ ;5 TDD

Bluel's testing features

Tools->Preferences... Miscellaneous tab check "Show unit testing tools"
Test Class

Right-click class, select "Create Test Class"
Test Fixture

a collection of objects that have already been created, with invoked methods to
transform the objects into the state to be tested/checked.

Can be created interactively or directly by coding
Interactive Test Fixture
Instantiate object(s) to be tested
Invoke method(s) to be created, (transform objects to test state)
Right-click the test class. Select "Object Bench to Test Fixture."

This records all of the objects on the object bench inside the test class.
Adds object(s) instantiation and method invocation code to the test class.

Each test that you add to this test class will be run with the current configuration
of objects as its starting point.

Intro to Object-Oriented Dev |

JUnit Test Cases {5 TDD

Test Case Creation
A "test case" 1s one particular test to check.

Includes a statement of what actions to perform, together with a statement of Zow
to check whether those actions had the desired effect.

First part is accomplished by the test fixture.
Second part is accomplished by test methods.

Test Method Creation
Right-click test class, select "Create Test Method...".
Give test method a meaningful name indicating what it checks.
Oobject bench reverts to the stored "test fixture" state for this test class.
Red "recording" light in BluelJ's window comes on.

Any actions taken now are "recorded" as part of the test case.
Right-click on objects and invoke method to be tested.
Finish test case by clicking "End" button.

Intro to Object-Oriented Dev |

JUnit Test Assertions ;5 TDD

Object State Checks
Edit the test class/method just created.

Add assertions to the test method to ensure that the state change has occurred
correctly.

JUnit Assertion methods

junit.framework.TestCase provides methods for "checking" conditions in a test
case.

These assertion methods are named using the pattern assert<Condition>(<tes>),
for checking whether the boolean fest is true.

Common JUnit assertions: (see JUnit test case API)
assertEquals(expr, expr);
assertFalse(boolean expr);
asertNotNull(reference);
assertNull(reference);

assertTrue(boolean expr);

Intro to Object-Oriented Dev |

Test Case Methodology ;5 TDD

Path Testing

Test cases must be written to ensure that every statement in a class must be
executed, (implies that each method must be invoked & tested).

Boundary-Value Testing

Test cases must be coded to check states that are immediately below, right on and
above method execution/data boundaries.

For example, consider a method that sets the circumference of a person’s head to
determine their hat size. Due to the range of hat sizes the company sells the range
of acceptable input is limited to MINHEAD...MAXHEAD.

Boundary value tests cases must be written to check the result of the method for the
following values:

MINHEAD-1, MINHEAD, MINHEAD+1, MAXHEAD-1, MAXHEAD,
MAXHEAD+1

Equivalence Partitioning

Test cases are grouped into equivalent partitions & only 1 or 2 cases from within
each equivalence partition is tested.

For the previous example the equivalence partitions would be:

values below the minimum, minimum, legal values, maximum, values above the
maximum.

Intro to Object-Oriented Dev |

class Person & TDD

Problem

Code a test class to perform automated unit testing on the Person class.

rﬂ Blue.): Person E]@1

Project Edit Tools Wiew Help

Mew Class...

==unit test==
Zampile PersonTest

r—'
_|

Fun Tests
Person

B B

A

Computer Science Dept Va Tech Jan. 2006 Intro to Object_Oriented Dev | ©2006 Barnette, ND

