
Computer Science Dept Va Tech Jan. 2006 ©2006 Barnette, ND

1TDD

Intro to Object-Oriented Dev I

Test-Driven Development (TDD)

� Underlying philosophy
– Test code interleaved with system code development yields more reliable

software.

� Advantages
– Increases confidence of code correctness.

– Bugs/mistakes are easier to locate/fix in code immediately after it is written since

it still fresh in the programmer’s mind.

� Code is developed such that classes/methods are testable in isolation.

– Helps ensure that code satisfies system requirements.

� The tests serve as system-level documentation.

– Decreases debugging time.

– Uncovers design flaws

– Integrates naturally with stepwise refinement & problem decomposition

� Allows functionality to be added incrementally

Computer Science Dept Va Tech Jan. 2006 ©2006 Barnette, ND

2TDD

Intro to Object-Oriented Dev I

TDD Coding

� Composing test code

– Test code is developed in a separate test class - automated.

– Objects of the class under test are instantiated in the test class.

– Code which exercises the objects is written.

– Assertion code which expresses the correct behavior of the objects under

exercise is written.

� Testing

– The goal of tests are to discover errors in your code.

– Writes tests that purposefully attempt to cause code to fail.

– When code it changed, tests on that code that previously passed must be re-

executed.

Program testing can best show the presence of errors but never their

absence.

--Edsger Dijkstra: 1930-2002

Computer Science Dept Va Tech Jan. 2006 ©2006 Barnette, ND

3TDD

Intro to Object-Oriented Dev I

Practice of TDD

� Approach

– Write a small amount of code, write the test code for it

� Tests code is small and targeted

– Alternatively, write the test code for each method prior to writing the method.

� As soon as the method is written it is ready to be tested with the previously written test

code.

� Unit Testing

– Simple accessor/mutator methods can be tested by using them to test construction

and other methods, (simple = = 1 line of code).

� TDD Development Cycle

– Code the tests for the next module to be developed

– Code the module so that it passes the tests

– Execute the tests

– Refactor/modify the code related to failed tests (automated process)

– Repeat the TDD development cycle

Computer Science Dept Va Tech Jan. 2006 ©2006 Barnette, ND

4TDD

Intro to Object-Oriented Dev I

JUnit Testing in BlueJ

� BlueJ's testing features

– Tools->Preferences... Miscellaneous tab check "Show unit testing tools"

� Test Class

– Right-click class, select "Create Test Class"

� Test Fixture

– a collection of objects that have already been created, with invoked methods to

transform the objects into the state to be tested/checked.

– Can be created interactively or directly by coding

� Interactive Test Fixture

– Instantiate object(s) to be tested

– Invoke method(s) to be created, (transform objects to test state)

– Right-click the test class. Select "Object Bench to Test Fixture."

– This records all of the objects on the object bench inside the test class.

� Adds object(s) instantiation and method invocation code to the test class.

– Each test that you add to this test class will be run with the current configuration

of objects as its starting point.

Computer Science Dept Va Tech Jan. 2006 ©2006 Barnette, ND

5TDD

Intro to Object-Oriented Dev I

JUnit Test Cases

� Test Case Creation

– A "test case" is one particular test to check.

– Includes a statement of what actions to perform, together with a statement of how

to check whether those actions had the desired effect.

– First part is accomplished by the test fixture.

– Second part is accomplished by test methods.

� Test Method Creation

– Right-click test class, select "Create Test Method...".

– Give test method a meaningful name indicating what it checks.

– Oobject bench reverts to the stored "test fixture" state for this test class.

– Red "recording" light in BlueJ's window comes on.

� Any actions taken now are "recorded" as part of the test case.

� Right-click on objects and invoke method to be tested.

� Finish test case by clicking "End" button.

Computer Science Dept Va Tech Jan. 2006 ©2006 Barnette, ND

6TDD

Intro to Object-Oriented Dev I

JUnit Test Assertions

� Object State Checks

– Edit the test class/method just created.

– Add assertions to the test method to ensure that the state change has occurred

correctly.

� JUnit Assertion methods

– junit.framework.TestCase provides methods for "checking" conditions in a test

case.

– These assertion methods are named using the pattern assert<Condition>(<test>),

for checking whether the boolean test is true.

– Common JUnit assertions: (see JUnit test case API)

� assertEquals(expr, expr);

� assertFalse(boolean expr);

� asertNotNull(reference);

� assertNull(reference);

� assertTrue(boolean expr);

Computer Science Dept Va Tech Jan. 2006 ©2006 Barnette, ND

7TDD

Intro to Object-Oriented Dev I

Test Case Methodology

� Path Testing

– Test cases must be written to ensure that every statement in a class must be
executed, (implies that each method must be invoked & tested).

� Boundary-Value Testing

– Test cases must be coded to check states that are immediately below, right on and
above method execution/data boundaries.

– For example, consider a method that sets the circumference of a person’s head to
determine their hat size. Due to the range of hat sizes the company sells the range
of acceptable input is limited to MINHEAD…MAXHEAD.

� Boundary value tests cases must be written to check the result of the method for the
following values:
MINHEAD-1, MINHEAD, MINHEAD+1, MAXHEAD-1, MAXHEAD,
MAXHEAD+1

� Equivalence Partitioning

– Test cases are grouped into equivalent partitions & only 1 or 2 cases from within
each equivalence partition is tested.

– For the previous example the equivalence partitions would be:

� values below the minimum, minimum, legal values, maximum, values above the
maximum.

Computer Science Dept Va Tech Jan. 2006 ©2006 Barnette, ND

8TDD

Intro to Object-Oriented Dev I

class Person

� Problem

– Code a test class to perform automated unit testing on the Person class.

