
9/8/10 

1 

EVENTS AND GRAPHICAL 
USER INTERFACES 

GUIs 

  A graphical user interface (GUI) in Java is created 
with at least three kinds of objects 

 components, events, listeners 

  A component is a graphical screen element 
  label, button, text field, check box, etc. 

  Some components are also containers, which hold 
other components 

 frame, panel, applet, dialog box 

Events 

  An event is an object that represents some activity 
to which we want to respond 

 a graphical button is pressed 
 a check box is toggled 
  the mouse is moved 
  the mouse is dragged 
  the mouse button is clicked 
 a keyboard key is pressed 
 a timer expires 

  A component generates or "fires" an event 

Listeners 

  A listener object "waits" for an event to occur and 
responds accordingly 

  Listeners are created by implementing a listener 
interface or deriving it from a listener adapter class 

  We generally make use of component and event 
classes from the Java API library, and write listeners 
as event handlers 

  We must establish the relationship between the 
components that fire events and the listeners that 
respond to them 

GUI Processing 

A component generates 
an event 

The component calls the appropriate 
method in the listener, passing the event 

The listener method 
"handles" the event 

Model-View-Controller 

  A software design should reflect three key roles and 
keep them separated: 

 Model - manages domain-specific data 
 View - presents the model in a user interface 
 Controller - manages the interaction 

  The examples we'll look at focus on the event 
processing in Java 

  The model and view are merged 



9/8/10 

2 

Push Buttons 

  A push button is a component that lets the user initiate 
an action by clicking it 

  A push button is represented by the JButton class 
  It fires an action event 
  An action listener can be created by implementing the 
ActionListener interface 

  Listeners are often created as inner classes 
  See the PushCounter example 

Text Fields 

  A text field is a component that allows the user to 
enter one line of text input 

  A text field is represented by the JTextField 
class 

  A text field generates an action event when the 
enter key is pressed (while the cursor is in the field) 

  See the Fahrenheit example 

Check Boxes 

  A check box is a button that can be toggled on or 
off 

  It is represented by the JCheckBox class 
  A check box generates an item event whenever it 

changes state (is checked on or off) 
  The ItemListener interface is used to define 

item event listeners 
  See the StyleOptions example 

Radio Buttons 

  A group of radio buttons represents a set of mutually 
exclusive options -- only one can be "on" at any time 

  A radio button is created from the JRadioButton 
class, and are grouped into a ButtonGroup object 

  When one button from the group is selected, the 
currently "on" button is toggled off automatically 

  A radio button generates an action event 
  See the QuoteOptions example 

Mouse Events 

  Events related to the mouse are separated into 
mouse events and mouse motion events 

  Mouse events: 

mouse pressed� the mouse button is pressed down �

mouse released� the mouse button is released�

mouse clicked� the mouse button is pressed down and 
released without moving the mouse in between �

mouse entered� the mouse pointer is moved over a component �

mouse exited� the mouse pointer is moved off of a component �

Mouse Events 

  Mouse motion events: 

  Mouse event listeners implement the MouseListener 
and MouseMotionListener interfaces 

  They can also be created by extending the 
MouseAdapter or MouseMotionAdapter 
classes, which provide empty methods for all events 

mouse moved� the mouse is moved�

mouse dragged� the mouse is moved while the mouse 
button is pressed down �



9/8/10 

3 

Mouse Events 

  For a given program, we may only care about one 
or two mouse events 

  Empty methods can be used to satisfy the listener 
interface 

  See the Dots example 
  Rubberbanding is the visual effect in which a shape is 

stretched as it is drawn with the mouse 
  See the RubberLines example 

Key Events 

  A key event is generated when a keyboard key is used 

  Listeners implement the KeyListener interface or 
extend the KeyAdapter class 

  Constants in the event object can be used to determine 
which key was pressed 

  See the Direction example 

key pressed� a key is pressed down �
key released� a key is released�
key typed� a key is pressed down and released�

Sliders 

  A slider is a component that allows the user to specify 
a value within a numeric range 

  It is represented by the JSlider class 
  The minimum and maximum values are set by values 

passed to the constructor 
  A slider can be oriented vertically or horizontally and 

can have optional tick marks and labels 
  A slider produces a change event when it is moved 
  See the SlideColor example 

The Timer Class 

  A timer generates an action event at specified 
intervals 

  The Timer class contains methods to start and 
stop the timer, and to set the interval delay 

  It's defined in the javax.swing package and 
considered to be a GUI component though it has 
no visual representation 

  Timers can be used to create animations 
  See the Rebound example 

Other Components 

  Dialog boxes of various types can be created using 
the JOptionPane class 

  There are two specialized dialog boxes: 
 color choosers (JColorChooser) 

 file choosers (JFileChooser) 

  Combo boxes combine a text box and a drop-down 
menu (JComboBox) 

  Other containers include scroll panes 
(JScrollPane) and split panes (JSplitPane) 

Extras 

  Borders of various styles can be put around any 
component to enhance the look or create distinct 
visual spaces 

  Components can be disabled (grayed out) when they 
shouldn't be used 

  Tool tips can be defined to appear when the mouse 
cursor rests momentarily on a component 

  Mnemonics can be set so that components can be 
triggered using the keyboard 



9/8/10 

4 

Layout Managers 

  A layout manager is an object that determines the 
way components are arranged in a container 

Layout Manager� Defined In �
Flow Layout � AWT �

Border Layout � AWT �
Card Layout � AWT �
Grid Layout � AWT �
Box Layout � Swing�

Overlay Layout � Swing�

Layout Managers 

  Every container has a default layout manager 
  The setLayout method is used to explicitly set the 

layout manager 
  Each layout manager has its own particular rules 

governing how components are arranged 
  Some layout managers pay attention to a 

component's preferred size and others do not 
  The layout manager is consulted as components are 

added and as the container is resized 
  See the LayoutDemo example 

Flow Layout 

  Flow layout puts as many components as possible on 
a row 

  Rows are created as needed to accommodate all of 
the components 

  Components are displayed in the order they are 
added 

  Horizontal alignment and horizontal and vertical 
gaps can be explicitly set 

  Flow layout is the default for a panel 

Border Layout 

  A border layout defines five areas: 

  A single component can be added to each area 
  The areas expand or contract as needed to 

accommodate components or fill space 

Grid Layout 

  A grid layout displays components in a rectangular 
grid of rows and columns 

  One component per cell 
  All cells have the same size 
  As components are added, they fill the grid from 

left-to-right and top-to-bottom (by default) 
  The size of each cell is determined by the overall 

size of the container 

Box Layout 

  A box layout organizes components in one row 
horizontally or in one column vertically 

  Components are placed top-to-bottom or left-to-
right in the order they are added 

  Many different configurations can be created using 
multiple containers with box layout 

  Invisible components can be added to take up space 
between components 

 Rigid areas have a fixed size 
 Glue determines where excess space goes 


